Identifying and managing threatened invertebrates through assessment of coextinction risk

© 2011 Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 25(2011), 4 vom: 15. Aug., Seite 787-96
1. Verfasser: Moir, Melinda L (VerfasserIn)
Weitere Verfasser: Vesk, Peter A, Brennan, Karl E C, Keith, David A, McCarthy, Michael A, Hughes, Lesley
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:© 2011 Society for Conservation Biology.
Invertebrates with specific host species may have a high probability of extinction when their hosts have a high probability of extinction. Some of these invertebrates are more likely to go extinct than their hosts, and under some circumstances, specific actions to conserve the host may be detrimental to the invertebrate. A critical constraint to identifying such invertebrates is uncertainty about their level of host specificity. We used two host-breadth models that explicitly incorporated uncertainty in the host specificity of an invertebrate species. We devised a decision protocol to identify actions that may increase the probability of persistence of a given dependent species. The protocol included estimates from the host-breadth models and decision nodes to identify cothreatened species. We applied the models and protocol to data on 1055 insects (186 species) associated with 2 threatened (as designated by the Australian Government) plant species and 19 plant species that are not threatened to determine whether any insect herbivores have the potential to become extinct if the plant becomes extinct. According to the host-breadth models, 18 species of insect had high host specificity to the threatened plant species. From these 18 insects, the decision protocol highlighted 6 species that had a high probability of extinction if their hosts were to become extinct (3% of all insects examined). The models and decision protocol have added objectivity and rigor to the process of deciding which dependent invertebrates require conservation action, particularly when dealing with largely unknown and speciose faunas
Beschreibung:Date Completed 15.11.2011
Date Revised 20.07.2011
published: Print-Electronic
Citation Status MEDLINE
ISSN:1523-1739
DOI:10.1111/j.1523-1739.2011.01663.x