Aspects of heterogeneous enantioselective catalysis by metals
Some aspects of metal-catalyzed heterogeneous enantioselective reactions are reviewed with specific reference to four different systems where the phenomena that control enantioselection appear to be very different. In the case of glucose electro-oxidation, it is clear that any intrinsic chirality pr...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 27(2011), 16 vom: 16. Aug., Seite 9687-95 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Metals Glucose IY9XDZ35W2 |
Zusammenfassung: | Some aspects of metal-catalyzed heterogeneous enantioselective reactions are reviewed with specific reference to four different systems where the phenomena that control enantioselection appear to be very different. In the case of glucose electro-oxidation, it is clear that any intrinsic chirality present at the metal surface plays a vital role. With α-keto hydrogenation, achiral surfaces modified by the adsorption of chiral agents become effective enantioselective catalysts and the formation of extended arrays of chiral species appears not to be of importance: instead a 1:1 docking interaction controlled by hydrogen bonding between the adsorbed chiral modifier and the prochiral reactant determines the outcome. Hydrogen bonding also plays a central role in β-ketoester hydrogenation, but here fundamental studies indicate that the formation of ordered arrays involving the reactant and chiral ligand is of importance. Asymmetric C═C hydrogenation, though relatively little studied, has the potential for major impact in synthetic organic chemistry both on the laboratory scale and in the manufacture of fine chemicals and pharmaceuticals. The structural attributes that determine whether a given chiral ligand is effective have been identified; the ability to form strong covalent bonds with the metal surface while also resisting hydrogenation and displacement by the strongly adsorbing reactant under reaction conditions is an essential necessary condition. Beyond this, ligand rigidity in the vicinity of the chirality center coupled with resistance to SAM formation is a critically important factor whose absence results in racemic chemistry |
---|---|
Beschreibung: | Date Completed 09.01.2012 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la200009w |