Max-min distance analysis by using sequential SDP relaxation for dimension reduction
We propose a new criterion for discriminative dimension reduction, max-min distance analysis (MMDA). Given a data set with C classes, represented by homoscedastic Gaussians, MMDA maximizes the minimum pairwise distance of these C classes in the selected low-dimensional subspace. Thus, unlike Fisher&...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 5 vom: 25. Mai, Seite 1037-50 |
---|---|
Auteur principal: | |
Autres auteurs: | |
Format: | Article en ligne |
Langue: | English |
Publié: |
2011
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |