Max-min distance analysis by using sequential SDP relaxation for dimension reduction

We propose a new criterion for discriminative dimension reduction, max-min distance analysis (MMDA). Given a data set with C classes, represented by homoscedastic Gaussians, MMDA maximizes the minimum pairwise distance of these C classes in the selected low-dimensional subspace. Thus, unlike Fisher&...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 5 vom: 25. Mai, Seite 1037-50
Auteur principal: Bian, Wei (Auteur)
Autres auteurs: Tao, Dacheng
Format: Article en ligne
Langue:English
Publié: 2011
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article