Max-min distance analysis by using sequential SDP relaxation for dimension reduction
We propose a new criterion for discriminative dimension reduction, max-min distance analysis (MMDA). Given a data set with C classes, represented by homoscedastic Gaussians, MMDA maximizes the minimum pairwise distance of these C classes in the selected low-dimensional subspace. Thus, unlike Fisher&...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 5 vom: 01. Mai, Seite 1037-50 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |