A component-wise analysis of constructible match cost functions for global stereopsis

Match cost functions are common elements of every stereopsis algorithm that are used to provide a dissimilarity measure between pixels in different images. Global stereopsis algorithms incorporate assumptions about the smoothness of the resulting distance map that can interact with match cost functi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 11 vom: 15. Nov., Seite 2147-59
1. Verfasser: Neilson, Daniel (VerfasserIn)
Weitere Verfasser: Yang, Yee-Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Match cost functions are common elements of every stereopsis algorithm that are used to provide a dissimilarity measure between pixels in different images. Global stereopsis algorithms incorporate assumptions about the smoothness of the resulting distance map that can interact with match cost functions in unpredictable ways. In this paper, we present a large-scale study on the relative performance of a structured set of match cost functions within several global stereopsis frameworks. We compare 272 match cost functions that are built from component parts in the context of four global stereopsis frameworks with a data set consisting of 57 stereo image pairs at three different variances of synthetic sensor noise. From our analysis, we infer a set of general rules that can be used to guide derivation of match cost functions for use in global stereopsis algorithms
Beschreibung:Date Completed 24.02.2012
Date Revised 01.12.2011
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2011.67