Simplified Computation for Nonparametric Windows Method of Probability Density Function Estimation

Recently, Kadir and Brady proposed a method for estimating probability density functions (PDFs) for digital signals which they call the Nonparametric (NP) Windows method. The method involves constructing a continuous space representation of the discrete space and sampled signal by using a suitable i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 8 vom: 15. Aug., Seite 1673-80
1. Verfasser: Joshi, Niranjan (VerfasserIn)
Weitere Verfasser: Kadir, Timor, Brady, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM206809603
003 DE-627
005 20231224000729.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.51  |2 doi 
028 5 2 |a pubmed24n0689.xml 
035 |a (DE-627)NLM206809603 
035 |a (NLM)21422492 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Joshi, Niranjan  |e verfasserin  |4 aut 
245 1 0 |a Simplified Computation for Nonparametric Windows Method of Probability Density Function Estimation 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.03.2016 
500 |a Date Revised 01.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Recently, Kadir and Brady proposed a method for estimating probability density functions (PDFs) for digital signals which they call the Nonparametric (NP) Windows method. The method involves constructing a continuous space representation of the discrete space and sampled signal by using a suitable interpolation method. NP Windows requires only a small number of observed signal samples to estimate the PDF and is completely data driven. In this short paper, we first develop analytical formulae to obtain the NP Windows PDF estimates for 1D, 2D, and 3D signals, for different interpolation methods. We then show that the original procedure to calculate the PDF estimate can be significantly simplified and made computationally more efficient by a judicious choice of the frame of reference. We have also outlined specific algorithmic details of the procedures enabling quick implementation. Our reformulation of the original concept has directly demonstrated a close link between the NP Windows method and the Kernel Density Estimator 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Kadir, Timor  |e verfasserin  |4 aut 
700 1 |a Brady, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 8 vom: 15. Aug., Seite 1673-80  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:8  |g day:15  |g month:08  |g pages:1673-80 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.51  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 8  |b 15  |c 08  |h 1673-80