Meta-Recognition : The Theory and Practice of Recognition Score Analysis

In this paper, we define meta-recognition, a performance prediction method for recognition algorithms, and examine the theoretical basis for its postrecognition score analysis form through the use of the statistical extreme value theory (EVT). The ability to predict the performance of a recognition...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 8 vom: 15. Aug., Seite 1689-95
1. Verfasser: Scheirer, Walter J (VerfasserIn)
Weitere Verfasser: Rocha, A, Micheals, Ross J, Boult, Terrance E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM206809506
003 DE-627
005 20231224000729.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.54  |2 doi 
028 5 2 |a pubmed24n0689.xml 
035 |a (DE-627)NLM206809506 
035 |a (NLM)21422483 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Scheirer, Walter J  |e verfasserin  |4 aut 
245 1 0 |a Meta-Recognition  |b The Theory and Practice of Recognition Score Analysis 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we define meta-recognition, a performance prediction method for recognition algorithms, and examine the theoretical basis for its postrecognition score analysis form through the use of the statistical extreme value theory (EVT). The ability to predict the performance of a recognition system based on its outputs for each match instance is desirable for a number of important reasons, including automatic threshold selection for determining matches and nonmatches, and automatic algorithm selection or weighting for multi-algorithm fusion. The emerging body of literature on postrecognition score analysis has been largely constrained to biometrics, where the analysis has been shown to successfully complement or replace image quality metrics as a predictor. We develop a new statistical predictor based upon the Weibull distribution, which produces accurate results on a per instance recognition basis across different recognition problems. Experimental results are provided for two different face recognition algorithms, a fingerprint recognition algorithm, a SIFT-based object recognition system, and a content-based image retrieval system 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Rocha, A  |e verfasserin  |4 aut 
700 1 |a Micheals, Ross J  |e verfasserin  |4 aut 
700 1 |a Boult, Terrance E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 8 vom: 15. Aug., Seite 1689-95  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:8  |g day:15  |g month:08  |g pages:1689-95 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.54  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 8  |b 15  |c 08  |h 1689-95