Effect of concentration on the photo-orientation and relaxation dynamics of self-assembled monolayers of mixtures of an azobenzene-based triethoxysilane with octyltriethoxysilane

Self-assembled monolayers (SAMs) were prepared from solutions with different proportions of a photoactive, azobenzene-based, silanized derivative of disperse red one (dDR1), and octyltriethoxysilane (OTE), a shorter, nonphotoactive molecule. The in-plane photoinduced orientational ordering of the re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 27(2011), 7 vom: 05. Apr., Seite 3336-42
1. Verfasser: Fang, Guanjiu (VerfasserIn)
Weitere Verfasser: Koral, Nathan, Zhu, Chenhui, Yi, Youngwoo, Glaser, Matthew A, Maclennan, Joseph E, Clark, Noel A, Korblova, Eva D, Walba, David M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Self-assembled monolayers (SAMs) were prepared from solutions with different proportions of a photoactive, azobenzene-based, silanized derivative of disperse red one (dDR1), and octyltriethoxysilane (OTE), a shorter, nonphotoactive molecule. The in-plane photoinduced orientational ordering of the resulting two component monolayers was monitored via precision measurement of in-plane birefringence using a dedicated high-extinction polarimeter. Measurements of contact angle, absorption, and birefringence show that introduction of OTE into the dDR1 deposition solution produces a continuous reduction of the surface density of dDR1 in the SAM, enabling the study of photowriting and relaxation dynamics in monolayers ranging from 100% dDR1 to samples where the dDR1 coverage is about 35%. The orientational dynamics depend strongly on the areal density of dDR1. As the fractional area of dDR1 is reduced, the rates of photowriting, photoerasing, and thermal relaxation increase, and the local orientational confinement of the molecules becomes more heterogeneous
Beschreibung:Date Completed 13.07.2011
Date Revised 30.03.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la104457v