Bilayer lipid membrane formation on a chemically modified S-layer lattice

The present paper describes the generation of a biomimetic model lipid membrane on bacterial surface (S-)layer which covered the entire surface of various sensors. The S-layer lattice allows one to be independent from the underlying solid material and provides a biological surface and anchoring stru...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 27(2011), 7 vom: 05. Apr., Seite 3731-8
1. Verfasser: Schrems, A (VerfasserIn)
Weitere Verfasser: Kibrom, A, Küpcü, S, Kiene, E, Sleytr, U B, Schuster, B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lipid Bilayers Membranes, Artificial
Beschreibung
Zusammenfassung:The present paper describes the generation of a biomimetic model lipid membrane on bacterial surface (S-)layer which covered the entire surface of various sensors. The S-layer lattice allows one to be independent from the underlying solid material and provides a biological surface and anchoring structure for lipid membranes. S-layer proteins were chemically modified via binding of two amine-terminated phospholipids. Subsequently, a bimolecular lipid membrane anchored to the previously generated viscoelastic lipid monolayer was generated by the rapid solvent exchange technique. Characterization of the intermediate (monolayer) and final membrane structures (bilayer) was performed by imaging, surface-sensitive, and electrochemical techniques. This bilayer lipid membrane generated on an S-layer lattice revealed a thickness of ∼6 nm and constitutes a stable supported model membrane system with highly isolating properties showing a membrane resistance of 8.5 MΩ × cm(2)
Beschreibung:Date Completed 13.07.2011
Date Revised 20.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la104238e