|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM206209886 |
003 |
DE-627 |
005 |
20250212121908.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2011.42
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0687.xml
|
035 |
|
|
|a (DE-627)NLM206209886
|
035 |
|
|
|a (NLM)21358002
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lanza, Alessandro
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Statistical Change Detection by the Pool Adjacent Violators Algorithm
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.11.2015
|
500 |
|
|
|a Date Revised 10.09.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In this paper, we present a statistical change detection approach aimed at being robust with respect to the main disturbance factors acting in real-world applications such as illumination changes, camera gain and exposure variations, noise. We rely on modeling the effects of disturbance factors on images as locally order-preserving transformations of pixel intensities plus additive noise. This allows us to identify within the space of all of the possible image change patterns the subspace corresponding to disturbance factors effects. Hence, scene changes can be detected by a-contrario testing the hypothesis that the measured pattern is due to disturbance factors, that is, by computing a distance between the pattern and the subspace. By assuming additive Gaussian noise, the distance can be computed within a maximum likelihood nonparametric isotonic regression framework. In particular, the projection of the pattern onto the subspace is computed by an O(N) iterative procedure known as Pool Adjacent Violators algorithm
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Di Stefano, Luigi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1998
|g 33(2011), 9 vom: 24. Sept., Seite 1894-910
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2011
|g number:9
|g day:24
|g month:09
|g pages:1894-910
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2011.42
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2011
|e 9
|b 24
|c 09
|h 1894-910
|