Statistical Change Detection by the Pool Adjacent Violators Algorithm

In this paper, we present a statistical change detection approach aimed at being robust with respect to the main disturbance factors acting in real-world applications such as illumination changes, camera gain and exposure variations, noise. We rely on modeling the effects of disturbance factors on i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 9 vom: 24. Sept., Seite 1894-910
1. Verfasser: Lanza, Alessandro (VerfasserIn)
Weitere Verfasser: Di Stefano, Luigi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM206209886
003 DE-627
005 20250212121908.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.42  |2 doi 
028 5 2 |a pubmed25n0687.xml 
035 |a (DE-627)NLM206209886 
035 |a (NLM)21358002 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lanza, Alessandro  |e verfasserin  |4 aut 
245 1 0 |a Statistical Change Detection by the Pool Adjacent Violators Algorithm 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a statistical change detection approach aimed at being robust with respect to the main disturbance factors acting in real-world applications such as illumination changes, camera gain and exposure variations, noise. We rely on modeling the effects of disturbance factors on images as locally order-preserving transformations of pixel intensities plus additive noise. This allows us to identify within the space of all of the possible image change patterns the subspace corresponding to disturbance factors effects. Hence, scene changes can be detected by a-contrario testing the hypothesis that the measured pattern is due to disturbance factors, that is, by computing a distance between the pattern and the subspace. By assuming additive Gaussian noise, the distance can be computed within a maximum likelihood nonparametric isotonic regression framework. In particular, the projection of the pattern onto the subspace is computed by an O(N) iterative procedure known as Pool Adjacent Violators algorithm 
650 4 |a Journal Article 
700 1 |a Di Stefano, Luigi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 33(2011), 9 vom: 24. Sept., Seite 1894-910  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:9  |g day:24  |g month:09  |g pages:1894-910 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.42  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 9  |b 24  |c 09  |h 1894-910