Secure and Robust Iris Recognition Using Random Projections and Sparse Representations

Noncontact biometrics such as face and iris have additional benefits over contact-based biometrics such as fingerprint and hand geometry. However, three important challenges need to be addressed in a noncontact biometrics-based authentication system: ability to handle unconstrained acquisition, robu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 9 vom: 22. Sept., Seite 1877-93
1. Verfasser: Pillai, Jaishanker K (VerfasserIn)
Weitere Verfasser: Patel, Vishal M, Chellappa, Rama, Ratha, Nalini K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM206039247
003 DE-627
005 20250212115007.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.34  |2 doi 
028 5 2 |a pubmed25n0687.xml 
035 |a (DE-627)NLM206039247 
035 |a (NLM)21339529 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pillai, Jaishanker K  |e verfasserin  |4 aut 
245 1 0 |a Secure and Robust Iris Recognition Using Random Projections and Sparse Representations 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.03.2016 
500 |a Date Revised 01.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Noncontact biometrics such as face and iris have additional benefits over contact-based biometrics such as fingerprint and hand geometry. However, three important challenges need to be addressed in a noncontact biometrics-based authentication system: ability to handle unconstrained acquisition, robust and accurate matching, and privacy enhancement without compromising security. In this paper, we propose a unified framework based on random projections and sparse representations, that can simultaneously address all three issues mentioned above in relation to iris biometrics. Our proposed quality measure can handle segmentation errors and a wide variety of possible artifacts during iris acquisition. We demonstrate how the proposed approach can be easily extended to handle alignment variations and recognition from iris videos, resulting in a robust and accurate system. The proposed approach includes enhancements to privacy and security by providing ways to create cancelable iris templates. Results on public data sets show significant benefits of the proposed approach 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
700 1 |a Ratha, Nalini K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 33(2011), 9 vom: 22. Sept., Seite 1877-93  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:9  |g day:22  |g month:09  |g pages:1877-93 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.34  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 9  |b 22  |c 09  |h 1877-93