A New Ghost Cell/Level Set Method for Moving Boundary Problems : Application to Tumor Growth

In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing. - 1999. - 35(2008), 2-3 vom: 01. Juni, Seite 266-299
1. Verfasser: Macklin, Paul (VerfasserIn)
Weitere Verfasser: Lowengrub, John S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of scientific computing
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM205960162
003 DE-627
005 20250714182915.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n1430.xml 
035 |a (DE-627)NLM205960162 
035 |a (NLM)21331304 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Macklin, Paul  |e verfasserin  |4 aut 
245 1 2 |a A New Ghost Cell/Level Set Method for Moving Boundary Problems  |b Application to Tumor Growth 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 29.05.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics-an effect observed in real tumor growth 
650 4 |a Journal Article 
700 1 |a Lowengrub, John S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d 1999  |g 35(2008), 2-3 vom: 01. Juni, Seite 266-299  |w (DE-627)NLM098177567  |x 0885-7474  |7 nnas 
773 1 8 |g volume:35  |g year:2008  |g number:2-3  |g day:01  |g month:06  |g pages:266-299 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2008  |e 2-3  |b 01  |c 06  |h 266-299