Microtopographic patterns affect Escherichia coli biofilm formation on poly(dimethylsiloxane) surfaces

Biofilms are involved in 80% of human bacterial infections and are up to 1000 times more tolerant to antibiotics than their planktonic counterparts. To better understand the mechanism of bacteria-surface interactions, polydimethylsiloxane (PDMS) surfaces with microtopographic patterns were tested to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 6 vom: 15. März, Seite 2686-91
1. Verfasser: Hou, Shuyu (VerfasserIn)
Weitere Verfasser: Gu, Huan, Smith, Cassandra, Ren, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Dimethylpolysiloxanes baysilon 63148-62-9
Beschreibung
Zusammenfassung:Biofilms are involved in 80% of human bacterial infections and are up to 1000 times more tolerant to antibiotics than their planktonic counterparts. To better understand the mechanism of bacteria-surface interactions, polydimethylsiloxane (PDMS) surfaces with microtopographic patterns were tested to study the effects of surface topography on bacterial adhesion and biofilm formation. The patterned PDMS surfaces were prepared by transferring complementary surface topography from a silicon wafer etched via photolithography to introduce 10 μm tall square-shape features. The dimension of protruding square features and the distance between adjacent features were systematically varied. Escherichia coli RP437/pRSH103 (with constitutive expression of red fluorescent protein) was found to preferentially attach and form biofilms in valleys between protruding features even when the dimension of plateaus (top of the square features) is considerably larger than valleys. In addition, significant adhesion of E. coli on plateaus was only observed when the plateaus were bigger than 20 μm × 20 μm for face-up patterns and 40 μm × 40 μm for face-down patterns. This finding suggests that a threshold dimension may be essential for biofilm formation on flat surfaces without physical confinement
Beschreibung:Date Completed 21.10.2014
Date Revised 04.02.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la1046194