Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition

This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For model...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 10 vom: 01. Okt., Seite 2066-80
1. Verfasser: Bianne-Bernard, Anne-Laure (VerfasserIn)
Weitere Verfasser: Menasri, Farès, Al-Hajj Mohamad, Rami, Mokbel, Chafic, Kermorvant, Christopher, Likforman-Sulem, Laurence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM205501567
003 DE-627
005 20231223234054.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.22  |2 doi 
028 5 2 |a pubmed24n0685.xml 
035 |a (DE-627)NLM205501567 
035 |a (NLM)21282849 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bianne-Bernard, Anne-Laure  |e verfasserin  |4 aut 
245 1 0 |a Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition 
650 4 |a Journal Article 
700 1 |a Menasri, Farès  |e verfasserin  |4 aut 
700 1 |a Al-Hajj Mohamad, Rami  |e verfasserin  |4 aut 
700 1 |a Mokbel, Chafic  |e verfasserin  |4 aut 
700 1 |a Kermorvant, Christopher  |e verfasserin  |4 aut 
700 1 |a Likforman-Sulem, Laurence  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 10 vom: 01. Okt., Seite 2066-80  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:10  |g day:01  |g month:10  |g pages:2066-80 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.22  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 10  |b 01  |c 10  |h 2066-80