Efficient texture image retrieval using copulas in a Bayesian framework

In this paper, we investigate a novel joint statistical model for subband coefficient magnitudes of the dual-tree complex wavelet transform, which is then coupled to a Bayesian framework for content-based image retrieval. The joint model allows to capture the association among transform coefficients...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 7 vom: 24. Juli, Seite 2063-77
1. Verfasser: Kwitt, Roland (VerfasserIn)
Weitere Verfasser: Meerwald, Peter, Uhl, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM205456650
003 DE-627
005 20231223234003.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2108663  |2 doi 
028 5 2 |a pubmed24n0685.xml 
035 |a (DE-627)NLM205456650 
035 |a (NLM)21278016 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kwitt, Roland  |e verfasserin  |4 aut 
245 1 0 |a Efficient texture image retrieval using copulas in a Bayesian framework 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2011 
500 |a Date Revised 21.06.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we investigate a novel joint statistical model for subband coefficient magnitudes of the dual-tree complex wavelet transform, which is then coupled to a Bayesian framework for content-based image retrieval. The joint model allows to capture the association among transform coefficients of the same decomposition scale and different color channels. It further facilitates to incorporate recent research work on modeling marginal coefficient distributions. We demonstrate the applicability of the novel model in the context of color texture retrieval on four texture image databases and compare retrieval performance to a collection of state-of-the-art approaches in the field. Our experiments further include a thorough computational analysis of the main building blocks, runtime measurements, and an analysis of storage requirements. Eventually, we identify a model configuration with low storage requirements, competitive retrieval accuracy, and a runtime behavior, which enables the deployment even on large image databases 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Meerwald, Peter  |e verfasserin  |4 aut 
700 1 |a Uhl, Andreas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 7 vom: 24. Juli, Seite 2063-77  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:7  |g day:24  |g month:07  |g pages:2063-77 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2108663  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 7  |b 24  |c 07  |h 2063-77