|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM205456650 |
003 |
DE-627 |
005 |
20231223234003.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2011.2108663
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0685.xml
|
035 |
|
|
|a (DE-627)NLM205456650
|
035 |
|
|
|a (NLM)21278016
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kwitt, Roland
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Efficient texture image retrieval using copulas in a Bayesian framework
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.10.2011
|
500 |
|
|
|a Date Revised 21.06.2011
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In this paper, we investigate a novel joint statistical model for subband coefficient magnitudes of the dual-tree complex wavelet transform, which is then coupled to a Bayesian framework for content-based image retrieval. The joint model allows to capture the association among transform coefficients of the same decomposition scale and different color channels. It further facilitates to incorporate recent research work on modeling marginal coefficient distributions. We demonstrate the applicability of the novel model in the context of color texture retrieval on four texture image databases and compare retrieval performance to a collection of state-of-the-art approaches in the field. Our experiments further include a thorough computational analysis of the main building blocks, runtime measurements, and an analysis of storage requirements. Eventually, we identify a model configuration with low storage requirements, competitive retrieval accuracy, and a runtime behavior, which enables the deployment even on large image databases
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Meerwald, Peter
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Uhl, Andreas
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 20(2011), 7 vom: 24. Juli, Seite 2063-77
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:20
|g year:2011
|g number:7
|g day:24
|g month:07
|g pages:2063-77
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2011.2108663
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2011
|e 7
|b 24
|c 07
|h 2063-77
|