In situ observation of water dissociation with lattice incorporation at FeO particle edges using scanning tunneling microscopy and X-ray photoelectron spectroscopy

The dissociation of H2O and formation of adsorbed hydroxyl groups on FeO particles grown on Au(111) were identified with in situ X-ray photoelectron spectroscopy (XPS) at water pressures ranging from 3 × 10(-8) to 0.1 Torr. The facile dissociation of H2O takes place at FeO particle edges, and it was...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 6 vom: 15. März, Seite 2146-9
1. Verfasser: Deng, Xingyi (VerfasserIn)
Weitere Verfasser: Lee, Junseok, Wang, Congjun, Matranga, Christopher, Aksoy, Funda, Liu, Zhi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The dissociation of H2O and formation of adsorbed hydroxyl groups on FeO particles grown on Au(111) were identified with in situ X-ray photoelectron spectroscopy (XPS) at water pressures ranging from 3 × 10(-8) to 0.1 Torr. The facile dissociation of H2O takes place at FeO particle edges, and it was successfully observed in situ with atomically resolved scanning tunneling microscopy (STM). The in situ STM studies show that adsorbed hydroxyl groups were formed exclusively along the edges of the FeO particles with the O atom becoming directly incorporated into the oxide crystalline lattice. The STM results are consistent with coordinatively unsaturated ferrous (CUF) sites along the FeO particle edge causing the observed reactivity with H2O. Our results also directly illustrate how structural defects and under-coordinated sites participate in chemical reactions
Beschreibung:Date Completed 21.10.2014
Date Revised 04.02.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la1049716