Theoretical mechanistic study on the reaction of CN radical with HNCN
Copyright © 2011 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 32(2011), 7 vom: 01. Mai, Seite 1449-55 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Free Radicals Nitriles Cyanamide 420-04-2 cyanogen 534Q0F66RK |
Zusammenfassung: | Copyright © 2011 Wiley Periodicals, Inc. The mechanism for the reaction of the cyanogen radical (CN) with the cyanomidyl radical (HNCN) has been investigated theoretically. The electronic structure information of the singlet and triplet potential energy surfaces (PESs) is obtained at the B3LYP/6-311+G(3df,2p) level, and the single-point energies are refined at the CCSD(T)/6-311+G(3df,2p) level as well as by multilevel MCG3-MPWB method. The calculations show that the C atom of CN additions to middle- and end-N atoms of HNCN are two barrierless association processes leading to the energy-rich intermediates IM1 HN(CN)CN and IM2 HNCNCN, respectively, on the singlet PES. The higher barriers of the subsequent isomerization and dissociation channels from IM1 and IM2 indicate that these two intermediates, which have considerably thermodynamic and kinetic stability, are the dominant product at high pressure. While at low pressure, the most favorable product is P(2) H + NCNCN, which will be formed from both IM1 and IM2 via direct dissociation processes by the H-N bond rupture, and the secondary feasible product is P(4) HCN + (1) NCN, while P(5) HCCN + N(2) and P(6) HCNC + N(2) are the least competitive products. On the triplet PES, P(14) NCNC + HN may be a comparable competitive product at high temperature. In addition, the comparison between the mechanisms of the CN + HNCN and OH + HNCN reactions is made. The present results will enrich our understanding of the chemistry of the HNCN radical in combustion processes and interstellar space |
---|---|
Beschreibung: | Date Completed 05.07.2011 Date Revised 15.11.2012 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.21736 |