Hybrid diversification operator-based evolutionary approach towards tomographic image reconstruction

The proposed algorithm introduces a new and efficient hybrid diversification operator (HDO) in the evolution cycle to improve the tomographic image reconstruction and diversity in the population by using simulated annealing (SA), and the modified form of decreasing law of mutation probability. This...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 7 vom: 15. Juli, Seite 1977-90
1. Verfasser: Qureshi, Shahzad Ahmad (VerfasserIn)
Weitere Verfasser: Mirza, Sikander M, Rajpoot, Nasir M, Arif, Muhammad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The proposed algorithm introduces a new and efficient hybrid diversification operator (HDO) in the evolution cycle to improve the tomographic image reconstruction and diversity in the population by using simulated annealing (SA), and the modified form of decreasing law of mutation probability. This evolutionary approach has been used for parallel-ray transmission tomography with the head and lung phantoms. The algorithm is designed to address the observation that the convergence of a genetic algorithm slows down as it evolves. The HDO is shown to yield a higher image quality as compared with the filtered back-projection (FBP), the multiscale wavelet transform, the SA, and the hybrid continuous genetic algorithm (HCGA) techniques. Various crossover operators including uniform, block, and image-row crossover operators have also been analyzed, and the latter has been generally found to give better image quality. The HDO is shown to yield improvements of up to 92% and 120% when compared with FBP in terms of PSNR, for 128 × 128 head and lung phantoms, respectively
Beschreibung:Date Completed 06.10.2011
Date Revised 21.06.2011
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2011.2107328