Fresnel-based beamforming for low-cost portable ultrasound

In this paper, we propose a modified electronic Fresnel-based beamforming method for low-cost portable ultrasound systems. This method uses a unique combination of analog and digital beamforming methods. Two versions of Fresnel beamforming are presented in this paper: 4-phase (4 different time delay...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 58(2011), 1 vom: 01. Jan., Seite 112-21
1. Verfasser: Nguyen, Man Minh (VerfasserIn)
Weitere Verfasser: Mung, Jay, Yen, Jesse T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, we propose a modified electronic Fresnel-based beamforming method for low-cost portable ultrasound systems. This method uses a unique combination of analog and digital beamforming methods. Two versions of Fresnel beamforming are presented in this paper: 4-phase (4 different time delays or phase shifts) and 8-phase (8 different time delays or phase shifts). The advantage of this method is that a system with 4 to 8 transmit channels and 2 receive channels with a network of switches can be used to focus an array with 64 to 128 elements. The simulation and experimental results show that Fresnel beamforming image quality is comparable to traditional delay-and-sum (DAS) beamforming in terms of spatial resolution and contrast-to-noise ratio (CNR) under certain system parameters. With an f-number of 2 and 50% signal bandwidth, the experimental lateral beamwidths are 0.54, 0.67, and 0.66 mm and the axial pulse lengths are 0.50, 0.51, and 0.50 mm for DAS, 8-phase, and 4-phase Fresnel beamforming, respectively. The experimental CNRs are 4.66, 4.42, and 3.98, respectively. These experimental results are in good agreement with simulation results
Beschreibung:Date Completed 02.05.2011
Date Revised 25.11.2016
published: Print
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2011.1778