A stripe-to-droplet transition driven by conformational transitions in a binary lipid-lipopolymer mixture at the air-water interface

We report the observation of an unusual stripe-droplet transition in precompressed Langmuir monolayers consisting of mixtures of poly(ethylene) glycol (PEG) amphiphiles and phospholipids. This highly reproducible and fully reversible transition occurs at approximately zero surface pressure during ex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 5 vom: 01. März, Seite 1900-6
1. Verfasser: El-Khouri, Rita J (VerfasserIn)
Weitere Verfasser: Frey, Shelli L, Szmodis, Alan W, Hall, Emily, Kauffman, Karlina J, Patten, Timothy E, Lee, Ka Yee C, Parikh, Atul N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Drug Carriers Phospholipids Surface-Active Agents Water 059QF0KO0R Polyethylene Glycols 3WJQ0SDW1A
LEADER 01000naa a22002652 4500
001 NLM205144284
003 DE-627
005 20231223233356.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1021/la104175f  |2 doi 
028 5 2 |a pubmed24n0684.xml 
035 |a (DE-627)NLM205144284 
035 |a (NLM)21244080 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a El-Khouri, Rita J  |e verfasserin  |4 aut 
245 1 2 |a A stripe-to-droplet transition driven by conformational transitions in a binary lipid-lipopolymer mixture at the air-water interface 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.06.2011 
500 |a Date Revised 01.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We report the observation of an unusual stripe-droplet transition in precompressed Langmuir monolayers consisting of mixtures of poly(ethylene) glycol (PEG) amphiphiles and phospholipids. This highly reproducible and fully reversible transition occurs at approximately zero surface pressure during expansion (or compression) of the monolayer following initial compression into a two-dimensional solid phase. It is characterized by spontaneous emergence of an extended, disordered stripe-like morphology from an optically homogeneous phase during gradual expansion. These stripe patterns appear as a transient feature and continuously progress, involving gradual coarsening and ultimate transformation into a droplet morphology upon further expansion. Furthermore, varying relative concentrations of the two amphiphiles and utilizing amphiphiles with considerably longer ethylene glycol headgroups reveal that this pattern evolution occurs in narrow concentration regimes, values of which depend on ethylene oxide headgroup size. These morphological transitions are reminiscent of those seen during a passage through a critical point by variations in thermodynamic parameters (e.g., temperature or pressure) as well as those involving spinodal decomposition. While the precise mechanism cannot be ascertained using present experiments alone, our observations can be reconciled in terms of modulations in competing interactions prompted by the pancake-mushroom-brush conformational transitions of the ethylene glycol headgroup. This in turn suggests that the conformational degree of freedom represents an independent order parameter, or a switch, which can induce large-scale structural reorganization in amphiphilic monolayers. Because molecular conformational changes are pervasive in biological membranes, we speculate that such conformational transition-induced pattern evolution might provide a physical mechanism by which membrane processes are amplified 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Drug Carriers  |2 NLM 
650 7 |a Phospholipids  |2 NLM 
650 7 |a Surface-Active Agents  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Polyethylene Glycols  |2 NLM 
650 7 |a 3WJQ0SDW1A  |2 NLM 
700 1 |a Frey, Shelli L  |e verfasserin  |4 aut 
700 1 |a Szmodis, Alan W  |e verfasserin  |4 aut 
700 1 |a Hall, Emily  |e verfasserin  |4 aut 
700 1 |a Kauffman, Karlina J  |e verfasserin  |4 aut 
700 1 |a Patten, Timothy E  |e verfasserin  |4 aut 
700 1 |a Lee, Ka Yee C  |e verfasserin  |4 aut 
700 1 |a Parikh, Atul N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 27(2011), 5 vom: 01. März, Seite 1900-6  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:27  |g year:2011  |g number:5  |g day:01  |g month:03  |g pages:1900-6 
856 4 0 |u http://dx.doi.org/10.1021/la104175f  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 27  |j 2011  |e 5  |b 01  |c 03  |h 1900-6