Evaluating glutamate and aspartate binding mechanisms to rutile (α-TiO2) via ATR-FTIR spectroscopy and quantum chemical calculations

Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy and quantum chemical calculations were used to elucidate the influence of solution chemistry (pH, amino acid concentration) on the binding mechanisms of glutamic and aspartic acid to rutile (α-TiO(2)). The amino acids,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 5 vom: 01. März, Seite 1778-87
1. Verfasser: Parikh, Sanjai J (VerfasserIn)
Weitere Verfasser: Kubicki, James D, Jonsson, Caroline M, Jonsson, Christopher L, Hazen, Robert M, Sverjensky, Dimitri A, Sparks, Donald L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Water 059QF0KO0R titanium dioxide 15FIX9V2JP Aspartic Acid 30KYC7MIAI Glutamic Acid mehr... 3KX376GY7L Titanium D1JT611TNE
LEADER 01000naa a22002652 4500
001 NLM205061001
003 DE-627
005 20231223233221.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1021/la103826p  |2 doi 
028 5 2 |a pubmed24n0684.xml 
035 |a (DE-627)NLM205061001 
035 |a (NLM)21235255 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Parikh, Sanjai J  |e verfasserin  |4 aut 
245 1 0 |a Evaluating glutamate and aspartate binding mechanisms to rutile (α-TiO2) via ATR-FTIR spectroscopy and quantum chemical calculations 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.06.2011 
500 |a Date Revised 21.11.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy and quantum chemical calculations were used to elucidate the influence of solution chemistry (pH, amino acid concentration) on the binding mechanisms of glutamic and aspartic acid to rutile (α-TiO(2)). The amino acids, glutamate and aspartate, contain carboxyl and amine groups whose dissociation over a pH range results in changes of molecular charge and reactivity, including reactions with mineral surfaces. At pH 3, a decrease of IR bands corresponding to protonated carboxyl groups is observed upon reaction with TiO(2) and indicates involvement of distal carboxyl groups during sorption. In addition, decreased IR bands arising from carboxyl bonds at 1400 cm(-1), concomitant to shifts to higher wavenumbers for ν(as)(γ-COO(-)) and ν(as)(α-COO(-)) (particularly at low glutamate concentrations), are indicative of inner-sphere coordination of both carboxyl groups and therefore suggest a "lying down" surface species. IR spectra of aspartate reacted with rutile are similar to those of solution-phase samples, without peak shifts indicative of covalent bonding, and outer-sphere coordination is predicted. Quantum chemical calculations were carried out to assist in elucidating molecular mechanisms for glutamate binding to rutile and are in reasonable agreement with experimental data. The combined use of ATR-FTIR data and quantum calculations suggests three potential surface configurations, which include (1) bridging-bidentate where glutamate is "lying down" and binding occurs through inner-sphere coordination of both α- and γ-carboxyl groups; (2) chelating-monodentate in which glutamate binds through inner-sphere coordination with the γ-carboxyl group in a "standing up" configuration (with or without protonation of the α-carboxyl); and (3) another bridging-bidentate configuration where glutamate is binding to rutile via inner-sphere coordination of the α-carboxyl group and outer-sphere coordination with the γ-carboxyl ("lying down") 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a titanium dioxide  |2 NLM 
650 7 |a 15FIX9V2JP  |2 NLM 
650 7 |a Aspartic Acid  |2 NLM 
650 7 |a 30KYC7MIAI  |2 NLM 
650 7 |a Glutamic Acid  |2 NLM 
650 7 |a 3KX376GY7L  |2 NLM 
650 7 |a Titanium  |2 NLM 
650 7 |a D1JT611TNE  |2 NLM 
700 1 |a Kubicki, James D  |e verfasserin  |4 aut 
700 1 |a Jonsson, Caroline M  |e verfasserin  |4 aut 
700 1 |a Jonsson, Christopher L  |e verfasserin  |4 aut 
700 1 |a Hazen, Robert M  |e verfasserin  |4 aut 
700 1 |a Sverjensky, Dimitri A  |e verfasserin  |4 aut 
700 1 |a Sparks, Donald L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 27(2011), 5 vom: 01. März, Seite 1778-87  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:27  |g year:2011  |g number:5  |g day:01  |g month:03  |g pages:1778-87 
856 4 0 |u http://dx.doi.org/10.1021/la103826p  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 27  |j 2011  |e 5  |b 01  |c 03  |h 1778-87