Robust principal component analysis based on maximum correntropy criterion

Principal component analysis (PCA) minimizes the mean square error (MSE) and is sensitive to outliers. In this paper, we present a new rotational-invariant PCA based on maximum correntropy criterion (MCC). A half-quadratic optimization algorithm is adopted to compute the correntropy objective. At ea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 6 vom: 26. Juni, Seite 1485-94
1. Verfasser: He, Ran (VerfasserIn)
Weitere Verfasser: Hu, Bao-Gang, Zheng, Wei-Shi, Kong, Xiang-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM204895189
003 DE-627
005 20231223232909.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2103949  |2 doi 
028 5 2 |a pubmed24n0683.xml 
035 |a (DE-627)NLM204895189 
035 |a (NLM)21216713 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Ran  |e verfasserin  |4 aut 
245 1 0 |a Robust principal component analysis based on maximum correntropy criterion 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2011 
500 |a Date Revised 19.05.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Principal component analysis (PCA) minimizes the mean square error (MSE) and is sensitive to outliers. In this paper, we present a new rotational-invariant PCA based on maximum correntropy criterion (MCC). A half-quadratic optimization algorithm is adopted to compute the correntropy objective. At each iteration, the complex optimization problem is reduced to a quadratic problem that can be efficiently solved by a standard optimization method. The proposed method exhibits the following benefits: 1) it is robust to outliers through the mechanism of MCC which can be more theoretically solid than a heuristic rule based on MSE; 2) it requires no assumption about the zero-mean of data for processing and can estimate data mean during optimization; and 3) its optimal solution consists of principal eigenvectors of a robust covariance matrix corresponding to the largest eigenvalues. In addition, kernel techniques are further introduced in the proposed method to deal with nonlinearly distributed data. Numerical results demonstrate that the proposed method can outperform robust rotational-invariant PCAs based on L(1) norm when outliers occur 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hu, Bao-Gang  |e verfasserin  |4 aut 
700 1 |a Zheng, Wei-Shi  |e verfasserin  |4 aut 
700 1 |a Kong, Xiang-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 6 vom: 26. Juni, Seite 1485-94  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:6  |g day:26  |g month:06  |g pages:1485-94 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2103949  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 6  |b 26  |c 06  |h 1485-94