The role of prior model calibration on predictions with ensemble Kalman filter

© 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1979. - 49(2011), 6 vom: 01. Nov., Seite 845-58
1. Verfasser: Huber, E (VerfasserIn)
Weitere Verfasser: Hendricks-Franssen, H J, Kaiser, H P, Stauffer, F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM204839718
003 DE-627
005 20231223232805.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1111/j.1745-6584.2010.00784.x  |2 doi 
028 5 2 |a pubmed24n0683.xml 
035 |a (DE-627)NLM204839718 
035 |a (NLM)21210793 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huber, E  |e verfasserin  |4 aut 
245 1 4 |a The role of prior model calibration on predictions with ensemble Kalman filter 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.03.2012 
500 |a Date Revised 25.10.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2011, The Author(s). Ground Water © 2011, National Ground Water Association. 
520 |a This paper, based on a real world case study (Limmat aquifer, Switzerland), compares inverse groundwater flow models calibrated with specified numbers of monitoring head locations. These models are updated in real time with the ensemble Kalman filter (EnKF) and the prediction improvement is assessed in relation to the amount of monitoring locations used for calibration and updating. The prediction errors of the models calibrated in transient state are smaller if the amount of monitoring locations used for the calibration is larger. For highly dynamic groundwater flow systems a transient calibration is recommended as a model calibrated in steady state can lead to worse results than a noncalibrated model with a well-chosen uniform conductivity. The model predictions can be improved further with the assimilation of new measurement data from on-line sensors with the EnKF. Within all the studied models the reduction of 1-day hydraulic head prediction error (in terms of mean absolute error [MAE]) with EnKF lies between 31% (assimilation of head data from 5 locations) and 72% (assimilation of head data from 85 locations). The largest prediction improvements are expected for models that were calibrated with only a limited amount of historical information. It is worthwhile to update the model even with few monitoring locations as it seems that the error reduction with EnKF decreases exponentially with the amount of monitoring locations used. These results prove the feasibility of data assimilation with EnKF also for a real world case and show that improved predictions of groundwater levels can be obtained 
650 4 |a Journal Article 
700 1 |a Hendricks-Franssen, H J  |e verfasserin  |4 aut 
700 1 |a Kaiser, H P  |e verfasserin  |4 aut 
700 1 |a Stauffer, F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1979  |g 49(2011), 6 vom: 01. Nov., Seite 845-58  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnns 
773 1 8 |g volume:49  |g year:2011  |g number:6  |g day:01  |g month:11  |g pages:845-58 
856 4 0 |u http://dx.doi.org/10.1111/j.1745-6584.2010.00784.x  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2011  |e 6  |b 01  |c 11  |h 845-58