Molecular modeling of alkyl and alkenyl monolayers on hydrogen-terminated Si(111)
On H-Si(111) surfaces monolayer formation with 1-alkenes results in alkyl monolayers with a Si-C-C linkage, while 1-alkynes yield alkenyl monolayers with a Si-C═C linkage. Recently, considerable structural differences between both types of monolayers were observed, including an increased thickness,...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 3 vom: 01. Feb., Seite 972-80 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | On H-Si(111) surfaces monolayer formation with 1-alkenes results in alkyl monolayers with a Si-C-C linkage, while 1-alkynes yield alkenyl monolayers with a Si-C═C linkage. Recently, considerable structural differences between both types of monolayers were observed, including an increased thickness, improved packing, and higher surface coverage for the alkenyl monolayers. The precise origin thereof could experimentally not be clarified yet. Therefore, octadecyl and octadecenyl monolayers on Si(111) were studied in detail by molecular modeling via PCFF molecular mechanics calculations on periodically repeated slabs of modified surfaces. After energy minimization the packing energies, structural properties, close contacts, and deformations of the Si surfaces of monolayers structures with various substitution percentages and substitution patterns were analyzed. For the octadecyl monolayers all data pointed to a substitution percentage close to 50-55%, which is due the size of the CH(2) groups near the Si surface. This agrees with literature and the experimentally determined coverage of octadecyl monolayers. For the octadecenyl monolayers the minimum in packing energy per chain is calculated around 60% coverage, i.e., close to the experimentally observed value of 65% [Scheres et al. Langmuir 2010, 26, 4790], and this packing energy is less dependent on the substitution percentage than calculated for alkyl layers. Analysis of the chain conformations, close contacts, and Si surface deformation clarifies this, since even at coverages above 60% a relatively low number of close contacts and a negligible deformation of the Si was observed. In order to evaluate the thermodynamic feasibility of the monolayer structures, we estimated the binding energies of 1-alkenes and 1-alkynes to the hydrogen-terminated Si surface at a range of surface coverages by composite high-quality G3 calculations and determined the total energy of monolayer formation by adding the packing energies and the binding energies. It was shown that due to the significantly larger reaction exothermicity of the 1-alkynes, thermodynamically even a substitution percentage as high as 75% is possible for octadecenyl chains. However, because sterically (based on the van der Waals footprint) a coverage of 69% is the maximum for alkyl and alkenyl monolayers, the optimal substitution percentage of octadecenyl monolayers will be presumably close to this latter value, and the experimentally observed 65% is likely close to what is experimentally maximally obtainable with alkenyl monolayers |
---|---|
Beschreibung: | Date Completed 02.05.2011 Date Revised 25.01.2011 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la104705b |