Dense mirroring surface recovery from 1D homographies and sparse correspondences

In this work, we recover the 3D shape of mirrors, sunglasses, and stainless steel implements. A computer monitor displays several images of parallel stripes, each image at a different angle. Reflections of these stripes in a mirroring surface are captured by the camera. For every image point, the di...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 2 vom: 11. Feb., Seite 325-37
1. Verfasser: Rozenfeld, Stas (VerfasserIn)
Weitere Verfasser: Shimshoni, Ilan, Lindenbaum, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM204682266
003 DE-627
005 20231223232508.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.76  |2 doi 
028 5 2 |a pubmed24n0682.xml 
035 |a (DE-627)NLM204682266 
035 |a (NLM)21193810 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rozenfeld, Stas  |e verfasserin  |4 aut 
245 1 0 |a Dense mirroring surface recovery from 1D homographies and sparse correspondences 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.06.2011 
500 |a Date Revised 03.01.2011 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we recover the 3D shape of mirrors, sunglasses, and stainless steel implements. A computer monitor displays several images of parallel stripes, each image at a different angle. Reflections of these stripes in a mirroring surface are captured by the camera. For every image point, the direction of the displayed stripes and their reflections in the image are related by a 1D homography matrix, computed with a robust version of the statistically accurate heteroscedastic approach. By focusing on a sparse set of image points for which monitor-image correspondence is computed, the depth and the local shape may be estimated from these homographies. The depth estimation relies on statistically correct minimization and provides accurate, reliable results. Even for the image points where the depth estimation process is inherently unstable, we are able to characterize this instability and develop an algorithm to detect and correct it. After correcting the instability, dense surface recovery of mirroring objects is performed using constrained interpolation, which does not simply interpolate the surface depth values but also uses the locally computed 1D homographies to solve for the depth, the correspondence, and the local surface shape. The method was implemented and the shape of several objects was densely recovered at submillimeter accuracy 
650 4 |a Journal Article 
700 1 |a Shimshoni, Ilan  |e verfasserin  |4 aut 
700 1 |a Lindenbaum, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 2 vom: 11. Feb., Seite 325-37  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:2  |g day:11  |g month:02  |g pages:325-37 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.76  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 2  |b 11  |c 02  |h 325-37