Hyperconnected attribute filters based on k-flat zones

In this paper, we present a new method for attribute filtering, combining contrast and structural information. Using hyperconnectivity based on k-flat zones, we improve the ability of attribute filters to retain internal details in detected objects. Simultaneously, we improve the suppression of smal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 2 vom: 11. Feb., Seite 224-39
1. Verfasser: Ouzounis, Georgios K (VerfasserIn)
Weitere Verfasser: Wilkinson, Michael H F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM204682223
003 DE-627
005 20231223232508.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.74  |2 doi 
028 5 2 |a pubmed24n0682.xml 
035 |a (DE-627)NLM204682223 
035 |a (NLM)21193806 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ouzounis, Georgios K  |e verfasserin  |4 aut 
245 1 0 |a Hyperconnected attribute filters based on k-flat zones 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.06.2011 
500 |a Date Revised 03.01.2011 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a new method for attribute filtering, combining contrast and structural information. Using hyperconnectivity based on k-flat zones, we improve the ability of attribute filters to retain internal details in detected objects. Simultaneously, we improve the suppression of small, unwanted detail in the background. We extend the theory of attribute filters to hyperconnectivity and provide a fast algorithm to implement the new method. The new version is only marginally slower than the standard Max-Tree algorithm for connected attribute filters, and linear in the number of pixels or voxels. It is two orders of magnitude faster than anisotropic diffusion. The method is implemented in the form of a filtering rule suitable for handling both increasing (size) and nonincreasing (shape) attributes. We test this new framework on nonincreasing shape filters on both 2D images from astronomy, document processing, and microscopy, and 3D CT scans, and show increased robustness to noise while maintaining the advantages of previous methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wilkinson, Michael H F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 2 vom: 11. Feb., Seite 224-39  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:2  |g day:11  |g month:02  |g pages:224-39 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.74  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 2  |b 11  |c 02  |h 224-39