Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis

WRKY proteins are transcription factors involved in many plant processes including plant responses to pathogens. Here, the cross activity of TaWRKY78 from the monocot wheat and AtWRKY20 from the dicot Arabidopsis on the cognate promoters of the orthologous PR4-type genes wPR4e and AtHEL of wheat and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 62(2011), 6 vom: 01. März, Seite 1975-90
1. Verfasser: Proietti, S (VerfasserIn)
Weitere Verfasser: Bertini, L, Van der Ent, S, Leon-Reyes, A, Pieterse, C M J, Tucci, M, Caporale, C, Caruso, C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis Proteins Transcription Factors
Beschreibung
Zusammenfassung:WRKY proteins are transcription factors involved in many plant processes including plant responses to pathogens. Here, the cross activity of TaWRKY78 from the monocot wheat and AtWRKY20 from the dicot Arabidopsis on the cognate promoters of the orthologous PR4-type genes wPR4e and AtHEL of wheat and Arabidopsis, respectively, was investigated. In vitro analysis showed the ability of TaWRKY78 to bind a -17/+80 region of the wPR4e promoter, containing one cis-acting W-box. Moreover, transient expression analysis performed on both TaWRKY78 and AtWRKY20 showed their ability to recognize the cognate cis-acting elements present in the wPR4e and AtHEL promoters, respectively. Finally, this paper provides evidence that both transcription factors are able to cross-regulate the orthologous PR4 genes with an efficiency slightly lower than that exerted on the cognate promoters. The observation that orthologous genes are subjected to similar transcriptional control by orthologous transcription factors demonstrates that the terminal stages of signal transduction pathways leading to defence are conserved and suggests a fundamental role of PR4 genes in plant defence. Moreover, these results corroborate the hypothesis that gene orthology imply similar gene function and that diversification between monocot and dicot has most likely occurred after the specialization of WRKY function
Beschreibung:Date Completed 15.07.2011
Date Revised 20.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erq396