|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM204516544 |
003 |
DE-627 |
005 |
20231223232157.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2010.03585.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0682.xml
|
035 |
|
|
|a (DE-627)NLM204516544
|
035 |
|
|
|a (NLM)21175639
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Konnerup, Dennis
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Do tropical wetland plants possess convective gas flow mechanisms?
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2011
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
|
520 |
|
|
|a • Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. • The occurrence of pressurization and convective flow was determined in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature. • Nine of the 20 species studied were able to build up a static pressure of > 50 Pa, and eight species had convective flow rates higher than 1 ml min(-1). There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero. • It is concluded that convective flow through shoots and rhizomes is a common mechanism for below-ground aeration of tropical wetland plants and that plants with convective flow might have a competitive advantage for growth in deep water
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Gases
|2 NLM
|
700 |
1 |
|
|a Sorrell, Brian K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brix, Hans
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 190(2011), 2 vom: 15. Apr., Seite 379-86
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:190
|g year:2011
|g number:2
|g day:15
|g month:04
|g pages:379-86
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2010.03585.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 190
|j 2011
|e 2
|b 15
|c 04
|h 379-86
|