Microcontact click printing for templating ultrathin films of metal-organic frameworks

The controlled growth of metal-organic frameworks (MOFs) over surfaces has been investigated using a variety of surface analytical techniques. The use of microcontact printing to prepare surfaces, patterned with regions capable of nucleating the growth of MOFs, has been explored by employing copper-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 27(2011), 4 vom: 15. Feb., Seite 1341-5
1. Verfasser: Gassensmith, Jeremiah J (VerfasserIn)
Weitere Verfasser: Erne, Petra M, Paxton, Walter F, Valente, Cory, Stoddart, J Fraser
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The controlled growth of metal-organic frameworks (MOFs) over surfaces has been investigated using a variety of surface analytical techniques. The use of microcontact printing to prepare surfaces, patterned with regions capable of nucleating the growth of MOFs, has been explored by employing copper-catalyzed alkyne-azide cycloaddition (CuAAC) to pattern silicon wafers with carboxylic acids, a functional group that has been shown to nucleate the growth of MOFs on surfaces. Upon subjecting the patterned silicon surfaces to solvothermal conditions, MOF thin films were obtained and characterized subsequently by AFM, SEM, and grazing-incidence XRD (GIXRD). Large crystals (∼0.5 mm) have also been nucleated, as indicated by the presence of a bas-relief of the original pattern on one surface of the crystal, suggesting that it is possible to transfer the template surface pattern onto a single crystal of a MOF
Beschreibung:Date Completed 26.05.2011
Date Revised 09.02.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la103958z