Morphological evolution of Cu2O nanocrystals in an acid solution : stability of different crystal planes

The morphological evolution of uniform Cu(2)O nanocrystals with different morphologies in a weak acetic acid solution (pH = 3.5) has been studied for cubic, octahedral, rhombic dodecahedral, {100} truncated octahedral, and {110} truncated octahedral nanocrystals. Cu(2)O nanocrystals undergo oxidativ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 2 vom: 18. Jan., Seite 665-71
1. Verfasser: Hua, Qing (VerfasserIn)
Weitere Verfasser: Shang, Daili, Zhang, Wenhua, Chen, Kai, Chang, Sujie, Ma, Yunsheng, Jiang, Zhiquan, Yang, Jinlong, Huang, Weixin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Solutions Copper 789U1901C5 Acetic Acid Q40Q9N063P cuprous oxide T8BEA5064F
Beschreibung
Zusammenfassung:The morphological evolution of uniform Cu(2)O nanocrystals with different morphologies in a weak acetic acid solution (pH = 3.5) has been studied for cubic, octahedral, rhombic dodecahedral, {100} truncated octahedral, and {110} truncated octahedral nanocrystals. Cu(2)O nanocrystals undergo oxidative dissolution in weak acid solution, but their morphological changes depend on the exposed crystal planes. We found that the stability of Cu(2)O crystal planes in weak acid solution follows the order of {100} ≫ {111} > {110} and determines how the morphology of Cu(2)O nanocrystals evolves. The stable {100} crystal planes remain, and new {100} facets form at the expense of the less stable {111} and {110} crystal planes on the surface of Cu(2)O nanocrystals. Density functional theory calculations reveal that the Cu-O bond on Cu(2)O(100) surface has the shortest bond length. These results clearly exemplify that the morphology of inorganic crystals will evolve with the change of local chemical environment, shedding light on fundamentally understanding the morphological evolution of natural minerals and providing novel insights into the geomimetic synthesis of inorganic materials in the laboratory
Beschreibung:Date Completed 05.05.2011
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la104475s