Energy normalization for pose-invariant face recognition based on MRF model image matching

A pose-invariant face recognition system based on an image matching method formulated on MRFs is presented. The method uses the energy of the established match between a pair of images as a measure of goodness-of-match. The method can tolerate moderate global spatial transformations between the gall...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 6 vom: 07. Juni, Seite 1274-80
1. Verfasser: Arashloo, Shervin Rahimzadeh (VerfasserIn)
Weitere Verfasser: Kittler, Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM204142911
003 DE-627
005 20231223231456.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.209  |2 doi 
028 5 2 |a pubmed24n0680.xml 
035 |a (DE-627)NLM204142911 
035 |a (NLM)21135436 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Arashloo, Shervin Rahimzadeh  |e verfasserin  |4 aut 
245 1 0 |a Energy normalization for pose-invariant face recognition based on MRF model image matching 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2011 
500 |a Date Revised 01.06.2011 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A pose-invariant face recognition system based on an image matching method formulated on MRFs is presented. The method uses the energy of the established match between a pair of images as a measure of goodness-of-match. The method can tolerate moderate global spatial transformations between the gallery and the test images and alleviate the need for geometric preprocessing of facial images by encapsulating a registration step as part of the system. It requires no training on non-frontal face images. A number of innovations, such as a dynamic block size and block shape adaptation, as well as label pruning and error pre-whitening measures have been introduced to increase the effectiveness of the approach. The experimental evaluation of the method is performed on two publicly available databases. First, the method is tested on the rotation shots of the XM2VTS data set in a verification scenario. Next, the evaluation is conducted in an identification scenario on the CMU-PIE database. The method compares favorably with the existing 2D or 3D generative model-based methods on both databases in both identification and verification scenarios 
650 4 |a Journal Article 
700 1 |a Kittler, Josef  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 6 vom: 07. Juni, Seite 1274-80  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:6  |g day:07  |g month:06  |g pages:1274-80 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.209  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 6  |b 07  |c 06  |h 1274-80