A neural network approach for on-line fault detection of nitrogen sensors in alternated active sludge treatment plants

In this paper, an effective strategy for fault detection of nitrogen sensors in alternated active sludge treatment plants is proposed and tested on a simulated set-up. It is based on two predictive neural networks, which are trained using a historical set of data collected during fault-free operatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 62(2010), 12 vom: 01., Seite 2760-8
1. Verfasser: Caccavale, F (VerfasserIn)
Weitere Verfasser: Digiulio, P, Iamarino, M, Masi, S, Pierri, F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Sewage Nitrogen N762921K75
LEADER 01000naa a22002652 4500
001 NLM20403518X
003 DE-627
005 20231223231250.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2010.025  |2 doi 
028 5 2 |a pubmed24n0680.xml 
035 |a (DE-627)NLM20403518X 
035 |a (NLM)21123904 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Caccavale, F  |e verfasserin  |4 aut 
245 1 2 |a A neural network approach for on-line fault detection of nitrogen sensors in alternated active sludge treatment plants 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2011 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, an effective strategy for fault detection of nitrogen sensors in alternated active sludge treatment plants is proposed and tested on a simulated set-up. It is based on two predictive neural networks, which are trained using a historical set of data collected during fault-free operation of a wastewater treatment plant and their ability to predict reduced (ammonium) and oxidized (nitrates and nitrites) nitrogen is tested. The neural networks are also characterized by good generalization ability and robustness with respect to the influent variability with time and weather conditions. Then, simulations have been carried out imposing different kinds of fault on both sensors, as isolated spikes, abrupt bias and increased noise. Processing of residuals, based on the difference between measured concentration values and neural networks predictions, allows a quick revealing of the fault as well as the isolation of the corrupted sensor 
650 4 |a Journal Article 
650 7 |a Sewage  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Digiulio, P  |e verfasserin  |4 aut 
700 1 |a Iamarino, M  |e verfasserin  |4 aut 
700 1 |a Masi, S  |e verfasserin  |4 aut 
700 1 |a Pierri, F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 62(2010), 12 vom: 01., Seite 2760-8  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:62  |g year:2010  |g number:12  |g day:01  |g pages:2760-8 
856 4 0 |u http://dx.doi.org/10.2166/wst.2010.025  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2010  |e 12  |b 01  |h 2760-8