Equilibrium morphologies and effective spring constants of capillary bridges

We theoretically study the behavior of a liquid bridge formed between a pair of rigid and parallel plates. The plates are smooth, they may either be homogeneous or decorated by circular patches of more hydrophilic domains, and they are generally not identical. We calculate the mechanical equilibrium...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 24 vom: 21. Dez., Seite 18734-41
1. Verfasser: Kusumaatmaja, Halim (VerfasserIn)
Weitere Verfasser: Lipowsky, Reinhard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We theoretically study the behavior of a liquid bridge formed between a pair of rigid and parallel plates. The plates are smooth, they may either be homogeneous or decorated by circular patches of more hydrophilic domains, and they are generally not identical. We calculate the mechanical equilibrium distance of the liquid bridge as a function of liquid volume, contact angle, and radius of the chemical domain. We show that a liquid bridge can be an equilibrium configuration as long as the sum of the contact angles at the two walls is larger than 180°. When comparisons are possible, our results agree well with recent analytical and molecular dynamics simulation results. We also derive the effective spring constant of the liquid bridge as it is perturbed from its equilibrium distance. The spring constant diverges when the sum of the contact angles is 180° and is finite otherwise. The value of the spring constant decreases with increasing contact angle and volume, and the rate at which it decreases depends strongly on the properties of the two plates
Beschreibung:Date Completed 17.03.2011
Date Revised 14.12.2010
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la102206d