Multiscale molecular dynamics using the matched interface and boundary method

The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 230(2011), 2 vom: 20. Jan., Seite 435-457
1. Verfasser: Geng, Weihua (VerfasserIn)
Weitere Verfasser: Wei, G W
Format: Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM20372965X
003 DE-627
005 20241211231817.0
007 tu
008 231223s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n1628.xml 
035 |a (DE-627)NLM20372965X 
035 |a (NLM)21088761 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Geng, Weihua  |e verfasserin  |4 aut 
245 1 0 |a Multiscale molecular dynamics using the matched interface and boundary method 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 11.12.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems 
650 4 |a Journal Article 
700 1 |a Wei, G W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 230(2011), 2 vom: 20. Jan., Seite 435-457  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:230  |g year:2011  |g number:2  |g day:20  |g month:01  |g pages:435-457 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 230  |j 2011  |e 2  |b 20  |c 01  |h 435-457