Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles
We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell o...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 23 vom: 07. Dez., Seite 17981-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Coloring Agents Xanthenes Silicon Dioxide 7631-86-9 Texas red 82354-19-6 |
Zusammenfassung: | We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution |
---|---|
Beschreibung: | Date Completed 06.04.2011 Date Revised 30.11.2010 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la103415e |