Graph regularized sparse coding for image representation

Sparse coding has received an increasing amount of interest in recent years. It is an unsupervised learning algorithm, which finds a basis set capturing high-level semantics in the data and learns sparse coordinates in terms of the basis set. Originally applied to modeling the human visual cortex, s...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 5 vom: 15. Mai, Seite 1327-36
Auteur principal: Zheng, Miao (Auteur)
Autres auteurs: Bu, Jiajun, Chen, Chun, Wang, Can, Zhang, Lijun, Qiu, Guang, Cai, Deng
Format: Article en ligne
Langue:English
Publié: 2011
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM203346653
003 DE-627
005 20250212050519.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2090535  |2 doi 
028 5 2 |a pubmed25n0678.xml 
035 |a (DE-627)NLM203346653 
035 |a (NLM)21047712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Miao  |e verfasserin  |4 aut 
245 1 0 |a Graph regularized sparse coding for image representation 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.08.2011 
500 |a Date Revised 21.04.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Sparse coding has received an increasing amount of interest in recent years. It is an unsupervised learning algorithm, which finds a basis set capturing high-level semantics in the data and learns sparse coordinates in terms of the basis set. Originally applied to modeling the human visual cortex, sparse coding has been shown useful for many applications. However, most of the existing approaches to sparse coding fail to consider the geometrical structure of the data space. In many real applications, the data is more likely to reside on a low-dimensional submanifold embedded in the high-dimensional ambient space. It has been shown that the geometrical information of the data is important for discrimination. In this paper, we propose a graph based algorithm, called graph regularized sparse coding, to learn the sparse representations that explicitly take into account the local manifold structure of the data. By using graph Laplacian as a smooth operator, the obtained sparse representations vary smoothly along the geodesics of the data manifold. The extensive experimental results on image classification and clustering have demonstrated the effectiveness of our proposed algorithm 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bu, Jiajun  |e verfasserin  |4 aut 
700 1 |a Chen, Chun  |e verfasserin  |4 aut 
700 1 |a Wang, Can  |e verfasserin  |4 aut 
700 1 |a Zhang, Lijun  |e verfasserin  |4 aut 
700 1 |a Qiu, Guang  |e verfasserin  |4 aut 
700 1 |a Cai, Deng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 5 vom: 15. Mai, Seite 1327-36  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:5  |g day:15  |g month:05  |g pages:1327-36 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2090535  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 5  |b 15  |c 05  |h 1327-36