Light-controlled directional liquid drop movement on TiO2 nanorods-based nanocomposite photopatterns

Patterned polymeric coatings enriched with colloidal TiO(2) nanorods and prepared by photopolymerization are found to exhibit a remarkable increase in their water wettability when irradiated with UV laser light. The effect can be completely reversed using successive storage in vacuum and dark ambien...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 23 vom: 07. Dez., Seite 18557-63
1. Verfasser: Monteleone, Francesca Villafiorita (VerfasserIn)
Weitere Verfasser: Caputo, Gianvito, Canale, Claudio, Cozzoli, P Davide, Cingolani, Roberto, Fragouli, Despina, Athanassiou, Athanassia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Polymers Water 059QF0KO0R titanium dioxide 15FIX9V2JP Titanium D1JT611TNE
Beschreibung
Zusammenfassung:Patterned polymeric coatings enriched with colloidal TiO(2) nanorods and prepared by photopolymerization are found to exhibit a remarkable increase in their water wettability when irradiated with UV laser light. The effect can be completely reversed using successive storage in vacuum and dark ambient environment. By exploiting the enhancement of the nanocomposites hydrophilicity upon UV irradiation, we prepare wettability gradients along the surfaces by irradiating adjacent surface areas with increasing time. The gradients are carefully designed to achieve directional movement of water drops along them, taking into account the hysteresis effect that opposes the movement as well as the change in the shape of the drop during its motion. The accomplishment of surface paths for liquid flow, along which the hydrophilicity gradually increases, opens the way to a vast number of potential applications in microfluidics
Beschreibung:Date Completed 06.04.2011
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la1026398