Microtextured surfaces with gradient wetting properties

Patterned surfaces with microwrinkled surface structures were prepared by thermally evaporating thin aluminum (10-300 nm thick) (Al) layers onto thick prestrained layers of a silicone elastomer and subsequently releasing the strain. This resulted in the formation of sinusoidal periodic surface wrink...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 23 vom: 07. Dez., Seite 18349-56
1. Verfasser: Langley, Kevin R (VerfasserIn)
Weitere Verfasser: Sharp, James S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Patterned surfaces with microwrinkled surface structures were prepared by thermally evaporating thin aluminum (10-300 nm thick) (Al) layers onto thick prestrained layers of a silicone elastomer and subsequently releasing the strain. This resulted in the formation of sinusoidal periodic surface wrinkles with characteristic wavelengths in the 3-42 μm range and amplitudes as large as 3.6 ± 0.4 μm. The Al thickness dependence of the wrinkle wavelengths and amplitudes was determined for different values of the applied prestrain and compared to a recent large-amplitude deflection theory of wrinkle formation. The results were found to be in good agreement with theory. Samples with spatial gradients in wrinkle wavelength and amplitude were also produced by applying mechanical strain gradients to the silicone elastomer layers prior to deposition of the Al capping layers. Sessile water droplets that were placed on these surfaces were found to have contact angles that were dependent upon their position. Moreover, these samples were shown to direct the motion of small water droplets when the substrates were vibrated
Beschreibung:Date Completed 06.04.2011
Date Revised 30.11.2010
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la1036212