Thermosensitive, soft glassy and structural colored colloidal array in ionic liquid : colloidal glass to gel transition
A novel soft material comprising thermosensitive poly(benzyl methacrylate)-grafted silica nanoparticles (PBnMA-g-NPs) and the ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)amide ([C(2)mim][NTf(2)]), was fabricated. The thermosensitive properties were studied over a wid...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 26(2010), 23 vom: 07. Dez., Seite 18031-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | A novel soft material comprising thermosensitive poly(benzyl methacrylate)-grafted silica nanoparticles (PBnMA-g-NPs) and the ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)amide ([C(2)mim][NTf(2)]), was fabricated. The thermosensitive properties were studied over a wide range of particle concentrations and temperatures. PBnMA-g-NPs in the IL underwent the lower critical solution temperature (LCST) phase transition at lower temperatures with a broader transition temperature range as compared to the free PBnMA solution. Highly concentrated suspensions formed soft glassy colloidal arrays (SGCAs) exhibiting a soft-solid behavior and angle-independent structural color. For the first time, we report a discrete change in the angle-independent structural color of SGCAs with temperature because of a temperature-induced colloidal glass-to-gel transition. The interparticle interaction changed from repulsive to attractive at the LCST temperature, and it was characterized by a V-shaped rheological response and a direct electron microscope observation of the colloidal suspension in the IL. With unique rheological and optical properties as well as properties derived from the IL itself, the thermosensitive SGCAs may be of interest as a new material for a wide range of applications such as electrochemical devices and color displays |
---|---|
Beschreibung: | Date Completed 06.04.2011 Date Revised 30.11.2010 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la103716q |