Fast, memory-efficient cell location in unstructured grids for visualization

Applying certain visualization techniques to datasets described on unstructured grids requires the interpolation of variables of interest at arbitrary locations within the dataset's domain of definition. Typical solutions to the problem of finding the grid element enclosing a given interpolatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 16(2010), 6 vom: 15. Nov., Seite 1541-50
1. Verfasser: Garth, Christoph (VerfasserIn)
Weitere Verfasser: Joy, Kenneth I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Applying certain visualization techniques to datasets described on unstructured grids requires the interpolation of variables of interest at arbitrary locations within the dataset's domain of definition. Typical solutions to the problem of finding the grid element enclosing a given interpolation point make use of a variety of spatial subdivision schemes. However, existing solutions are memory- intensive, do not scale well to large grids, or do not work reliably on grids describing complex geometries. In this paper, we propose a data structure and associated construction algorithm for fast cell location in unstructured grids, and apply it to the interpolation problem. Based on the concept of bounding interval hierarchies, the proposed approach is memory-efficient, fast and numerically robust. We examine the performance characteristics of the proposed approach and compare it to existing approaches using a number of benchmark problems related to vector field visualization. Furthermore, we demonstrate that our approach can successfully accommodate large datasets, and discuss application to visualization on both CPUs and GPUs
Beschreibung:Date Completed 14.12.2010
Date Revised 26.10.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2010.156