|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM202618374 |
003 |
DE-627 |
005 |
20231223224643.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la103168t
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0675.xml
|
035 |
|
|
|a (DE-627)NLM202618374
|
035 |
|
|
|a (NLM)20973469
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mikroyannidis, J A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Bulk heterojunction photovoltaics using broadly absorbing small molecules based on 2-styryl-5-phenylazo-pyrrole
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 04.03.2011
|
500 |
|
|
|a Date Revised 10.11.2010
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Three new soluble small molecules (B, B6, and A) with a low band gap based on 2-styryl-5-phenylazo-pyrrole were synthesized. Molecules B and B6 contained pyrrole and N-hexylpyrrole, respectively, as the central unit, which was connected to N,N-dimethylphenyl-4-azo on one side of the pyrrole molecule. Molecule A contained N-hexylpyrrole as the central unit, which was connected to anthracenyl-9-azo on one side of the pyrrole molecule. The other side of the pyrrole molecule was connected to cyanovinylene 4-nitrophenyl for all molecules. The long-wavelength absorption maximum of the molecules was located at 601-637 nm, and their optical band gap was 1.62-1.67 eV. The photovoltaic properties have been investigated using blends of B, B6, or A with PCBM, and it was found that the device based on A:PCBM had a higher power conversion efficiency (PCE) (2.06%) than the devices based on B:PCBM (1.33%) and B6:PCBM (1.36%). This has been attributed to the higher hole mobility, the lower band gap of A relative to that of B or B6, and the higher energy difference between the LUMO of A and PCBM. The effect of solvent annealing and thermal-solvent annealing on the photovoltaic response of the device based on the A:PCBM blend has been investigated, and it was found that the devices based on solvent-treated and subsequent thermally annealed blends have PCEs of 2.56 and 2.83%, respectively. The increase in the PCE has been attributed to the enhanced crystallinity of the blend and the improvement in the charge transport due to a reduction in the difference between the electron and hole mobility in the blend
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kabanakis, A N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Balraju, P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sharma, G D
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 26(2010), 22 vom: 16. Nov., Seite 17739-48
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2010
|g number:22
|g day:16
|g month:11
|g pages:17739-48
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la103168t
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2010
|e 22
|b 16
|c 11
|h 17739-48
|