Real-time discriminative background subtraction

The authors examine the problem of segmenting foreground objects in live video when background scene textures change over time. In particular, we formulate background subtraction as minimizing a penalized instantaneous risk functional--yielding a local online discriminative algorithm that can quickl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 5 vom: 29. Mai, Seite 1401-14
1. Verfasser: Cheng, Li (VerfasserIn)
Weitere Verfasser: Gong, Minglun, Schuurmans, Dale, Caelli, Terry
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM202494608
003 DE-627
005 20231223224422.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2087764  |2 doi 
028 5 2 |a pubmed24n0675.xml 
035 |a (DE-627)NLM202494608 
035 |a (NLM)20959270 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Li  |e verfasserin  |4 aut 
245 1 0 |a Real-time discriminative background subtraction 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.08.2011 
500 |a Date Revised 21.04.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The authors examine the problem of segmenting foreground objects in live video when background scene textures change over time. In particular, we formulate background subtraction as minimizing a penalized instantaneous risk functional--yielding a local online discriminative algorithm that can quickly adapt to temporal changes. We analyze the algorithm's convergence, discuss its robustness to nonstationarity, and provide an efficient nonlinear extension via sparse kernels. To accommodate interactions among neighboring pixels, a global algorithm is then derived that explicitly distinguishes objects versus background using maximum a posteriori inference in a Markov random field (implemented via graph-cuts). By exploiting the parallel nature of the proposed algorithms, we develop an implementation that can run efficiently on the highly parallel graphics processing unit (GPU). Empirical studies on a wide variety of datasets demonstrate that the proposed approach achieves quality that is comparable to state-of-the-art offline methods, while still being suitable for real-time video analysis ( ≥ 75 fps on a mid-range GPU) 
650 4 |a Journal Article 
700 1 |a Gong, Minglun  |e verfasserin  |4 aut 
700 1 |a Schuurmans, Dale  |e verfasserin  |4 aut 
700 1 |a Caelli, Terry  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 5 vom: 29. Mai, Seite 1401-14  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:5  |g day:29  |g month:05  |g pages:1401-14 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2087764  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 5  |b 29  |c 05  |h 1401-14