Inverse halftoning based on the bayesian theorem

This study proposes a method which can generate high quality inverse halftone images from halftone images. This method can be employed prior to any signal processing over a halftone image or the inverse halftoning used in JBIG2. The proposed method utilizes the least-mean-square (LMS) algorithm to e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 4 vom: 29. Apr., Seite 1077-84
1. Verfasser: Liu, Yun-Fu (VerfasserIn)
Weitere Verfasser: Guo, Jing-Ming, Lee, Jiann-Der
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM202494594
003 DE-627
005 20231223224422.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2087765  |2 doi 
028 5 2 |a pubmed24n0675.xml 
035 |a (DE-627)NLM202494594 
035 |a (NLM)20959269 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yun-Fu  |e verfasserin  |4 aut 
245 1 0 |a Inverse halftoning based on the bayesian theorem 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.08.2011 
500 |a Date Revised 22.03.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This study proposes a method which can generate high quality inverse halftone images from halftone images. This method can be employed prior to any signal processing over a halftone image or the inverse halftoning used in JBIG2. The proposed method utilizes the least-mean-square (LMS) algorithm to establish a relationship between the current processing position and its corresponding neighboring positions in each type of halftone image, including direct binary search, error diffusion, dot diffusion, and ordered dithering. After which, a referenced region called a support region (SR) is used to extract features. The SR can be obtained by relabeling the LMS-trained filters with the order of importance. Moreover, the probability of black pixel occurrence is considered as a feature in this work. According to this feature, the probabilities of all possible grayscale values at the current processing position can be obtained by the Bayesian theorem. Consequently, the final output at this position is the grayscale value with the highest probability. Experimental results show that the proposed method offers better visual quality than that of Mese-Vaidyanathan's and Chang et al's methods in terms of human-visual peak signal-to-noise ratio (HPSNR). In addition, the memory consumption is also superior to Mese-Vaidyanathan's method 
650 4 |a Journal Article 
700 1 |a Guo, Jing-Ming  |e verfasserin  |4 aut 
700 1 |a Lee, Jiann-Der  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 4 vom: 29. Apr., Seite 1077-84  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:4  |g day:29  |g month:04  |g pages:1077-84 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2087765  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 4  |b 29  |c 04  |h 1077-84