Stabilization of lead sulfide nanoparticles by polyamines in aqueous solutions. A structural study of the dispersions

Lead sulfide (PbS) nanoparticles have been synthesized in aqueous solutions by a reaction between inorganic lead salts and sodium sulfide and stabilized using the cationic polyelectrolytes branched poly(ethylenimine) (PEI), poly(allylamine hydrochloride) (PAH), and poly(diallyldimethylammonium chlor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 26(2010), 22 vom: 16. Nov., Seite 16909-20
1. Verfasser: Koupanou, Elena (VerfasserIn)
Weitere Verfasser: Ahualli, Silvia, Glatter, Otto, Delgado, Angel, Krumeich, Frank, Leontidis, Epameinondas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Lead sulfide (PbS) nanoparticles have been synthesized in aqueous solutions by a reaction between inorganic lead salts and sodium sulfide and stabilized using the cationic polyelectrolytes branched poly(ethylenimine) (PEI), poly(allylamine hydrochloride) (PAH), and poly(diallyldimethylammonium chloride) (PDDA). The structures of the polyamine-stabilized nanoparticle dispersions were examined in detail using UV-vis spectroscopy, small-angle X-ray scattering (SAXS), static and dynamic electrophoretic mobility measurements, and transmission electron microscopy (TEM). Considerable differences were found between the stabilizing efficiencies of these polyelectrolytes, which cannot be attributed to their charge densities or their persistence lengths. Small monodisperse nanoparticles of PbS with a tight stabilizing shell were consistently found only when PEI was used as a stabilizer even at high pH values, although its charge density is then very low. The excellence of PEI as a stabilizer is mainly due to the extensive branching of the chains and the presence of uncharged secondary and tertiary amine groups, which apparently serve as good anchoring points at the nanoparticle surfaces. None of the polyelectrolytes examined here provide long-term protection of the nanoparticles toward oxidation by air, showing that a need for more complex multipurpose stabilizers exists for aqueous PbS dispersions
Beschreibung:Date Completed 04.03.2011
Date Revised 10.11.2010
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la1031366