Design and fabrication of bimorph transducer for optimal vibration energy harvesting

High energy density piezoelectric composition corresponding to 0.9Pb(Zr0.56Ti0.44)O3–0.1Pb[(Zn0.8/3Ni0.2/3) Nb2/3]O3 + 2 mol% MnO2 (PZTZNN) and 0.8[Pb(Zr0.52Ti0.48) O3]-0.2[Pb(Zn1/3Nb2/3)O3] (PZTPZN) were synthesized by conventional ceramic processing technique using three different sintering profil...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 57(2010), 7 vom: 04. Juli, Seite 1513-23
Auteur principal: Bedekar, Vishwas (Auteur)
Autres auteurs: Oliver, Josiah, Priya, Shashank
Format: Article en ligne
Langue:English
Publié: 2010
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:High energy density piezoelectric composition corresponding to 0.9Pb(Zr0.56Ti0.44)O3–0.1Pb[(Zn0.8/3Ni0.2/3) Nb2/3]O3 + 2 mol% MnO2 (PZTZNN) and 0.8[Pb(Zr0.52Ti0.48) O3]-0.2[Pb(Zn1/3Nb2/3)O3] (PZTPZN) were synthesized by conventional ceramic processing technique using three different sintering profiles. Plates of the sintered samples were used to fabricate the piezoelectric bimorphs with optimized dimensions to exhibit resonance in the loaded condition in the range of ~200 Hz. An analytical model for energy harvesting from bimorph transducer was developed which was confirmed by experimental measurements. The results of this study clearly show that power density of bimorph transducer can be enhanced by increasing the magnitude of product (d ∙ g), where d is the piezoelectric strain constant and g is the piezoelectric voltage constant
Description:Date Completed 19.01.2011
Date Revised 18.09.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1525-8955