Dictionary learning for stereo image representation

One of the major challenges in multi-view imaging is the definition of a representation that reveals the intrinsic geometry of the visual information. Sparse image representations with overcomplete geometric dictionaries offer a way to efficiently approximate these images, such that the multi-view g...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 4 vom: 01. Apr., Seite 921-34
1. Verfasser: Tošić, Ivana (VerfasserIn)
Weitere Verfasser: Frossard, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM202020673
003 DE-627
005 20250212020037.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2081679  |2 doi 
028 5 2 |a pubmed25n0673.xml 
035 |a (DE-627)NLM202020673 
035 |a (NLM)20889431 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tošić, Ivana  |e verfasserin  |4 aut 
245 1 0 |a Dictionary learning for stereo image representation 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.08.2011 
500 |a Date Revised 22.03.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a One of the major challenges in multi-view imaging is the definition of a representation that reveals the intrinsic geometry of the visual information. Sparse image representations with overcomplete geometric dictionaries offer a way to efficiently approximate these images, such that the multi-view geometric structure becomes explicit in the representation. However, the choice of a good dictionary in this case is far from obvious. We propose a new method for learning overcomplete dictionaries that are adapted to the joint representation of stereo images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms of dictionary elements (atoms) in two stereo views. A maximum-likelihood (ML) method for learning stereo dictionaries is then proposed, where a multi-view geometry constraint is included in the probabilistic model. The ML objective function is optimized using the expectation-maximization algorithm. We apply the learning algorithm to the case of omnidirectional images, where we learn scales of atoms in a parametric dictionary. The resulting dictionaries provide better performance in the joint representation of stereo omnidirectional images as well as improved multi-view feature matching. We finally discuss and demonstrate the benefits of dictionary learning for distributed scene representation and camera pose estimation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Frossard, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 4 vom: 01. Apr., Seite 921-34  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:4  |g day:01  |g month:04  |g pages:921-34 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2081679  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 4  |b 01  |c 04  |h 921-34