Variational bayesian super resolution

In this paper, we address the super resolution (SR) problem from a set of degraded low resolution (LR) images to obtain a high resolution (HR) image. Accurate estimation of the sub-pixel motion between the LR images significantly affects the performance of the reconstructed HR image. In this paper,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 4 vom: 15. Apr., Seite 984-99
1. Verfasser: Babacan, S Derin (VerfasserIn)
Weitere Verfasser: Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM201892979
003 DE-627
005 20231223223305.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2080278  |2 doi 
028 5 2 |a pubmed24n0673.xml 
035 |a (DE-627)NLM201892979 
035 |a (NLM)20876021 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Babacan, S Derin  |e verfasserin  |4 aut 
245 1 0 |a Variational bayesian super resolution 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.08.2011 
500 |a Date Revised 22.03.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we address the super resolution (SR) problem from a set of degraded low resolution (LR) images to obtain a high resolution (HR) image. Accurate estimation of the sub-pixel motion between the LR images significantly affects the performance of the reconstructed HR image. In this paper, we propose novel super resolution methods where the HR image and the motion parameters are estimated simultaneously. Utilizing a bayesian formulation, we model the unknown HR image, the acquisition process, the motion parameters and the unknown model parameters in a stochastic sense. Employing a variational bayesian analysis, we develop two novel algorithms which jointly estimate the distributions of all unknowns. The proposed framework has the following advantages: 1) Through the incorporation of uncertainty of the estimates, the algorithms prevent the propagation of errors between the estimates of the various unknowns; 2) the algorithms are robust to errors in the estimation of the motion parameters; and 3) using a fully bayesian formulation, the developed algorithms simultaneously estimate all algorithmic parameters along with the HR image and motion parameters, and therefore they are fully-automated and do not require parameter tuning. We also show that the proposed motion estimation method is a stochastic generalization of the classical Lucas-Kanade registration algorithm. Experimental results demonstrate that the proposed approaches are very effective and compare favorably to state-of-the-art SR algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Molina, Rafael  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 4 vom: 15. Apr., Seite 984-99  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:4  |g day:15  |g month:04  |g pages:984-99 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2080278  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 4  |b 15  |c 04  |h 984-99