Spatiotemporal localization and categorization of human actions in unsegmented image sequences

In this paper we address the problem of localization and recognition of human activities in unsegmented image sequences. The main contribution of the proposed method is the use of an implicit representation of the spatiotemporal shape of the activity which relies on the spatiotemporal localization o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 4 vom: 28. Apr., Seite 1126-40
1. Verfasser: Oikonomopoulos, Antonios (VerfasserIn)
Weitere Verfasser: Patras, Ioannis, Pantic, Maja
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM201667630
003 DE-627
005 20231223222847.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2076821  |2 doi 
028 5 2 |a pubmed24n0672.xml 
035 |a (DE-627)NLM201667630 
035 |a (NLM)20851793 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oikonomopoulos, Antonios  |e verfasserin  |4 aut 
245 1 0 |a Spatiotemporal localization and categorization of human actions in unsegmented image sequences 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.08.2011 
500 |a Date Revised 22.03.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper we address the problem of localization and recognition of human activities in unsegmented image sequences. The main contribution of the proposed method is the use of an implicit representation of the spatiotemporal shape of the activity which relies on the spatiotemporal localization of characteristic ensembles of feature descriptors. Evidence for the spatiotemporal localization of the activity is accumulated in a probabilistic spatiotemporal voting scheme. The local nature of the proposed voting framework allows us to deal with multiple activities taking place in the same scene, as well as with activities in the presence of clutter and occlusion. We use boosting in order to select characteristic ensembles per class. This leads to a set of class specific codebooks where each codeword is an ensemble of features. During training, we store the spatial positions of the codeword ensembles with respect to a set of reference points, as well as their temporal positions with respect to the start and end of the action instance. During testing, each activated codeword ensemble casts votes concerning the spatiotemporal position and extend of the action, using the information that was stored during training. Mean Shift mode estimation in the voting space provides the most probable hypotheses concerning the localization of the subjects at each frame, as well as the extend of the activities depicted in the image sequences. We present classification and localization results for a number of publicly available datasets, and for a number of sequences where there is a significant amount of clutter and occlusion 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Patras, Ioannis  |e verfasserin  |4 aut 
700 1 |a Pantic, Maja  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 4 vom: 28. Apr., Seite 1126-40  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:4  |g day:28  |g month:04  |g pages:1126-40 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2076821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 4  |b 28  |c 04  |h 1126-40