Surface-from-gradients without discrete integrability enforcement : A Gaussian kernel approach

Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 11 vom: 01. Nov., Seite 2085-99
1. Verfasser: Ng, Heung-Sun (VerfasserIn)
Weitere Verfasser: Wu, Tai-Pang, Tang, Chi-Keung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM201625105
003 DE-627
005 20231223222802.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.183  |2 doi 
028 5 2 |a pubmed24n0672.xml 
035 |a (DE-627)NLM201625105 
035 |a (NLM)20847395 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ng, Heung-Sun  |e verfasserin  |4 aut 
245 1 0 |a Surface-from-gradients without discrete integrability enforcement  |b A Gaussian kernel approach 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.02.2011 
500 |a Date Revised 17.09.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages: They can only handle dense per-pixel gradient fields, smooth out sharp features in a partially integrable field, or produce severe surface distortion in the results. In this paper, we present a method which does not enforce discrete integrability and reconstructs a 3D continuous surface from a gradient or a height field, or a combination of both, which can be dense or sparse. The key to our approach is the use of kernel basis functions, which transfer the continuous surface reconstruction problem into high-dimensional space, where a closed-form solution exists. By using the Gaussian kernel, we can derive a straightforward implementation which is able to produce results better than traditional techniques. In general, an important advantage of our kernel-based method is that the method does not suffer discretization and finite approximation, both of which lead to surface distortion, which is typical of Fourier or wavelet bases widely adopted by previous representative approaches. We perform comparisons with classical and recent methods on benchmark as well as challenging data sets to demonstrate that our method produces accurate surface reconstruction that preserves salient and sharp features. The source code and executable of the system are available for downloading 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Tai-Pang  |e verfasserin  |4 aut 
700 1 |a Tang, Chi-Keung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 11 vom: 01. Nov., Seite 2085-99  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:11  |g day:01  |g month:11  |g pages:2085-99 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 11  |b 01  |c 11  |h 2085-99