Computing accurate correspondences across groups of images

Groupwise image registration algorithms seek to establish dense correspondences between sets of images. Typically, they involve iteratively improving the registration between each image and an evolving mean. A variety of methods have been proposed, which differ in their choice of objective function,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 11 vom: 01. Nov., Seite 1994-2005
1. Verfasser: Cootes, Timothy F (VerfasserIn)
Weitere Verfasser: Twining, Carole J, Petrović, Vladimir S, Babalola, Kolawole O, Taylor, Christopher J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM201625040
003 DE-627
005 20231223222802.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.193  |2 doi 
028 5 2 |a pubmed24n0672.xml 
035 |a (DE-627)NLM201625040 
035 |a (NLM)20847389 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cootes, Timothy F  |e verfasserin  |4 aut 
245 1 0 |a Computing accurate correspondences across groups of images 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.02.2011 
500 |a Date Revised 17.09.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Groupwise image registration algorithms seek to establish dense correspondences between sets of images. Typically, they involve iteratively improving the registration between each image and an evolving mean. A variety of methods have been proposed, which differ in their choice of objective function, representation of deformation field, and optimization methods. Given the complexity of the task, the final accuracy is significantly affected by the choices made for each component. Here, we present a groupwise registration algorithm which can take advantage of the statistics of both the image intensities and the range of shapes across the group to achieve accurate matching. By testing on large sets of images (in both 2D and 3D), we explore the effects of using different image representations and different statistical shape constraints. We demonstrate that careful choice of such representations can lead to significant improvements in overall performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Twining, Carole J  |e verfasserin  |4 aut 
700 1 |a Petrović, Vladimir S  |e verfasserin  |4 aut 
700 1 |a Babalola, Kolawole O  |e verfasserin  |4 aut 
700 1 |a Taylor, Christopher J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 11 vom: 01. Nov., Seite 1994-2005  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:11  |g day:01  |g month:11  |g pages:1994-2005 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.193  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 11  |b 01  |c 11  |h 1994-2005